Changing the Ethernet Protocol - Benefits and Drawbacks

100GET- Ericsson cluster networking research activities

Joachim Scharf, Frank Feller joachim.scharf@ikr.uni-stuttgart.de 21.07.2008

Universität Stuttgart Institute of Communication Networks and Computer Engineering (IKR) Prof. Dr.-Ing. Dr. h.c. mult. P. J. Kühn

Outline

- Introduction of 100GET Ericsson Cluster
 - Participants
 - Topics
- Development of Ethernet
- Increased Ethernet frame size
 - Use case
 - Benefits
 - Drawbacks

100GET - Ericsson Cluster

Participants

Germany

- Ericsson
- Micram
- Heinrich-Hertz-Institut
- Universität Stuttgart (IKR, INT)
- Christian-Albrechts-Universität zu Kiel

Sweden

- Ericsson
- Acreo
- SP Devices
- KTH Royal Institute of Technology
- · Chalmers University of Technology

© 2008 Universität Stuttgart • IKR

8th Würzburg Workshop on IP

.

Topics in 100GET-ER

Complete Cluster

- Devices
 - Lasers
 - Modulators
 - ADCs, DACs
- Transmission and modulation
 - DQPSK
 - Sub-Carrier Multiplexing
 - OFDM
- Networking aspects
- → Majority of 100GET-ER participants dealing with non-networking topics

Networking Aspects

- Overall network architecture
- Protocol aspects
- Network Control Plane

Developments

Ethernet

•	1973-75	Experimental Ethernet by Metcalte & Boggs

IEEE 802.3 Ethernet Standard 10 Mbit/s 1983

1995 **Fast Ethernet** 100 Mbit/s

1998 Gigabit Ethernet 1 Gbit/s

2002 10 Gigabit Ethernet 10 Gbit/s

100 Gbit/s ??? 100 Gigabit Ethernet

Access Bandwidth

Modem 300 bit/s - 56 kbit/s

ISDN 64 kbit/s

DSL 3 Mbit/s (down), 768 kbit/s (up)

VDSL 250 Mbit/s

GPON 2.5 Gbit/s (down), 1.2 Gbit/s (up)

Payload FCS

FCS

FCS

→ Tremendous increases in speed

© 2008 Universität Stuttgart • IKR

8th Würzburg Workshop on IP

SA DA TPID

5

Ethernet Frame

Standards

- 802.3
- 802.1Q (VLAN)
- 802.1ad ("Q-in-Q")
- 802.1ah ("MAC-in-MAC")
- -DA TPID

SA DA ET

→ Payload size (46-1500 bytes) untouched

Reality Check

- ~9000 byte frames (Jumbo-Frames) supported by most Gbit/s equipment
- Usage of Jumbo-Frames in closed systems
- → Larger frames beneficial for specific applications (e.g. storage)

Questions addressed within Ericsson cluster

- Consequences of increased maximum frame size
- Optimal maximum frame size

Increased Frame Size

How to fill large frames

Services

- Video on Demand
- HD Video Streaming
- File Transfer
- File Sharing
- ...
- → Many (emerging) end-to-end services with bulk data transfer

Aggregation of Ethernet frames

- Hugh traffic amount especially for aggregation at core
- → Only small additional aggregation delay required

© 2008 Universität Stuttgart • IKR

8th Würzburg Workshop on IP

7

Increased Frame Size

Benefits

Capacity Usage Efficiency

- Overhead of normal Ethernet ~2.4% P+SFD DA SA T Payload CRC IFG 8 6 6 2 46 1500 4 12
- Worst case scenario (MAC-in-MAC, ...) < 5%
- → Increasing frame size improves efficiency but not significantly

Frame Rate

- At most linear decrease with increasing frame size
- Actual impact depends on traffic properties
 - Savings in range of 50% and above possible
 - Saturation with increasing size
- → Less hardware processing requirements in core as well as end systems
- → Cheaper hardware

Increased Frame Size

Drawbacks

Incompatibility

- Maximum payload 1500 bytes according to standard
- Huge amount of legacy equipment
- · One legacy device in communication path inhibits usage
- → Main reason for not using larger frames so far

MTU Discovery

- MTU Discovery especially necessary in inhomogenous networks
- Current approaches based on probing and ICMP
- ICMP often filtered due to potential denial of service attacks
- → Current approaches insufficient

Crosslayer Effects

- Influence on performance of other protocols (e.g. TCP)
- → Detailed investigation necessary
- → Impact on Future Internet?

© 2008 Universität Stuttgart • IKR

8th Würzburg Workshop on IP

Conclusion

- Basic Ethernet frame format fixed in 1983
- Since then 25 years of technological progress
- Payload size of Ethernet frame never changed in standardization
- Jumbo frames already used in closed scenarios
- Increase of frame size would have beneficial effects
- Potential issues and drawbacks have to be investigated
- → How long do we stick to the current Ethernet protocol?

,